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Abstract We discuss the theoretical and practical problems arising when trying to
compute excited states of nonrelativistic electrons in a molecular system, by mul-
ticonfiguration (MCSCF) methods. These nonlinear models approximate the linear
Schrödinger theory and are a generalization of the well-known Hartree–Fock approach.
Due to the MCSCF nonlinearity, a theoretical definition of what should be a MCSCF
excited state is not clear at all, contrarily to the ground state case. We compare various
definitions used in Quantum Chemistry. We in particular stress that some defects may
lead to important computational problems, already observed in Quantum Chemistry
(root flipping). We then present a definition of MCSCF excited states based on a solid
mathematical ground and compare it with the most used methods. This new definition
leads to a completely new algorithm for computing the first excited state, which was
proposed and tested in a collaboration with Cancès and Galicher. Numerical results
are provided for the simple case of two-electron systems, as an illustration of the
possible issues which can arise as consequences of the nonlinearity of the MCSCF
method.

Electronic excited states play an essential role in various phenomena of high inter-
est, such as photo-induced chemical reactions, femtosecond spectroscopy, or laser
control of molecular processes. The method which seems to be best-adapted to the
computation of excited states is to date the multiconfiguration self-consistent field
(MCSCF) method. Loosely speaking, this approach leads to variational models which
fill the gap between the mean-field Hartree–Fock and the N -body Schrödinger models.
But important problems are encountered in practice during MCSCF computations for
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excited states. The algorithms available at present do not always converge (root-flip-
ping problems) and, even when they converge, the interpretation of the obtained state
is not always completely clear.

The goal of this paper is to provide some possible mathematical explanation of these
phenomena. We shall in particular see that, due to the nonlinearity of the MCSCF mod-
els, the definition of what is an MCSCF excited state is not always clear. We shall
present a mathematically valid definition which has been proposed by the author in
[9], and compare it to the usual definitions used in Quantum Chemistry. Then, we
describe a new algorithm for the computation of the first excited state which has been
proposed and tested in a collaboration with Cancés and Galicher in [2].

1 The MCSCF method

The MCSCF method is a nonlinear approximate model for the computation of eigen-
functions and eigenvalues of the N -body Schrödinger Hamiltonian. For a mole-
cule containing M pointwise nuclei of positive charges z1, . . . , zM and located at
x̄1, . . . , x̄M ∈ R

3 (we work within the usual Born-Oppenheimer approximation), and
N nonrelativistic quantum electrons, the N -body Hamiltonian written in atomic units
reads

HN =
N∑

i=1

(
−1

2
�xi + V (xi )

)
+

∑

1�i< j�N

1

|xi − x j | . (1)

It acts on normalized electronic wavefunctions �(x1, . . . , xN ) ∈ L2
a((R

3)N ),
∫
R3N

�2 = 1. The subscript a indicates that, due to the fermionic nature of the electrons,
one solely considers wavefunctions � which are antisymmetric under permutations
of variables:

�(x1, . . . , xi , . . . , x j , . . . , xN ) = −�(x1, . . . , x j , . . . , xi , . . . , xN ).

Finally, V is the electrostatic potential generated by the nuclei

V (x) = −
M∑

m=1

zm

|x − x̄m | .

In what follows, we denote by Z = ∑M
m=1 zm the total nuclear charge. For the sake of

simplicity, we do not take the spin into account in the first part of this paper, but the
following arguments can be straightforwardly adapted to the case of spin-dependent
wavefunctions.

When Z > N − 1, it has been proved by Zhislin [18] and Zhislin–Sigalov [19],
that the spectrum σ(HN ) of HN has the form:

σ(HN ) = {λ0 ≤ λ1 ≤ · · · ≤ λk ≤ · · · } ∪ [�,∞),
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where the {λk}k≥0 are eigenvalues of finite multiplicity which are below and converge
to the bottom of the essential spectrum � as k → ∞. A ground state is a normal-
ized eigenfunction associated with the first eigenvalue λ0, whereas excited states are
obtained for λk > λ0. A ground or excited state �k is a solution of the time-indepen-
dent Schrödinger equation HN�k = λk�k . The (λk)

′s can be obtained by the usual
Rayleigh-Ritz formula

λk = inf
V ⊂D(HN )

dim(V )=k+1

sup
�∈V,∫
�2=1

〈� | HN |�〉, (2)

where D(HN ) is the domain of HN and 〈· ·〉 denotes the usual scalar product of
L2(R3N ).

The MCSCF method is based on the following remark:

L2
a((R

3)N ) =
N∧

n=1

L2(R3),

an equality which can be explicited in the following way. Consider an orthonormal
basis (ψi )1≤i of L2(R3),

∫
R3 ψiψ j = δi j . Then, one obtains an orthonormal basis of

L2
a((R

3)N ) by considering the antisymmetrized products (ψi1 ∧ · · · ∧ψiN )1≤i1<···<iN

where ψi1 ∧ · · · ∧ ψiN denotes the so-called Slater determinant of the ψik ’s:

(ψi1 ∧ · · · ∧ ψiN )(x1, . . . , xN ) = 1√
N ! det(ψik (xl))k,l . (3)

In other words every antisymmetric wavefunction � is an infinite linear combination
of such Slater determinants:

� =
∑

1≤i1<...<iN

ci1...iNψi1 ∧ · · · ∧ ψiN , (4)

the sum being convergent in L2
a((R

3)N ). Remark that
∫
R3N �

2 = 1 is then equivalent
to the condition

∑
i1<···<iN

(ci1...iN )
2 = 1.

In the MCSCF approximation, one restricts the number of Slater determinants
appearing in (4), by restricting the number of occupied orbitals. Moreover, to
obtain a suitable approximation, the orbitals will not be fixed but rather optimized.
Let K ≥ N be the number of considered orbitals, denoted as ϕ1, . . . , ϕK ∈ L2(R3)

and which still must satisfy the orthonormal condition
∫
ϕiϕ j = δi j . Both the coeffi-

cients (ci1,...,iN )1≤ik≤K and the K orbitals (ϕk)
K
k=1 are considered as being variational

parameters, and the form of the N -body wavefunction � is now

� =
∑

1≤i1<...<iN ≤K

ci1...iN ϕi1 ∧ · · · ∧ ϕiN . (5)
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When there is no ambiguity, we shall use the following convenient notation

� =
∑

I={i1<···<iN }
cI 	I

where by definition 	I = ϕi1 ∧ · · · ∧ ϕiN when I = {i1 < · · · < iN } ⊂ {1, . . . , K }.
Of course in practice not all the

(
K
N

)
possible Slater determinants in (5) are consid-

ered during an MCSCF computation, and only some of them are selected. One of the
most used method to choose an appropriate form for the wavefunction is the CASSCF
method [12] in which the orbitals are divided into three groups (the active, inactive
and virtual ones). We refer to [9] in which an appropriate formalism for treating these
methods is provided. For the sake of clarity, we shall only consider in this proceeding
the “full" MCSCF method (5) in which all orbitals are active.

When the quadratic form � → 〈� | HN |�〉 is restricted to states of the form (5),
one obtains an energy depending on (ci1,...,iN )1≤ik≤K and (ϕ1, . . . , ϕK ) ∈ L2(R3)K

which is nonlinear. This is due to the fact that functions of the form (5) do not form a
vector subspace of L2

a((R
3)N ). In the following, we denote by c = (ci1,...,iN )1≤ik≤K

the collection of the cI ’s (lexicographical ordering), and by 	 = (ϕ1, . . . , ϕK ) ∈
(L2(R3))K the collection of the orbitals. Due to the normalization constraint on the
wavefunction �, our variable (c,	) belongs to the following manifold

MK
N =

{
(c,	) ∈ R

(
K
N

)
× (L2(R3))K ,

∑

I

(cI )
2 = 1,

∫

R3
ϕiϕ j = δi j

}
. (6)

The MCSCF energy is then defined as E K
N (c,	) = 〈� | HN |�〉 where � is given

by (5).
We shall not give here an explicit expression of the MCSCF energy in terms of

(c,	) and refer to [9]. However, it is important to realize that the two variables c and
	 play different roles. The energy E K

N is still quadratic with respect to c:

E K
N (c,	) =

∑

I,J

cI cJ 〈	I | HN |	J 〉 =
∑

I,J

cI cJ (H	)I J

where (H	)I J = 〈	I | HN |	J 〉 and � = ∑
I cI	I . The Hamiltonian matrix H	 is

the
(

K
N

)×(
K
N

)
matrix of the quadratic form associated with HN , when it is restricted to

the
(

K
N

)
-dimensional space V	 = Span(	I ) spanned by the Slater determinants that

can be constructed with the orbitals 	 = (ϕ1, . . . , ϕK ). But, as mentioned above, the
energy E K

N is not quadratic with respect to the ϕi ’s and takes the following general
form:

E K
N (c,	) =

∑

i, j

γi j

2

∫

R3
(∇ϕi · ∇ϕ j + Vϕiϕ j )

+
∑

i, j,k,l

Wi jkl

∫∫

R6

ϕi (x)ϕ j (x)ϕk(y)ϕl(y)

|x − y| dx dy (7)
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where γi j and Wi jkl only depend on c. The first sum in (7) is quadratic whereas the last
term is quartic. Thus, the MCSCF equations (i.e. the equations satisfied by a stationary
point of E K

N on the manifold MK
N ) consist in an eigenvalue equation for c coupled

with a system of K nonlinear elliptic partial differential equations for (ϕ1, . . . , ϕK ),
of the general form

{
ni (c)

(−�
2 + V

)
ϕi + ∑

j W (c,	)
i, j ϕ j = ∑

j λi jϕ j

H	 c = β c.
(8)

The operators W (c,	)
i, j depend on (c,	) in a complicated manner.

Mathematically, it is not at all obvious to prove the existence of solutions to the
MCSCF equations (8) when the problem is posed in infinite dimension. There is a
possible lack of compactness at infinity: for any sequence (cn,	n) of approximate
solutions of (8) it is possible that some electrons “escape to infinity" as n → ∞ [4].
This phenomenon will typically occur when N � Z , if the nuclei are not able to bind
the N electrons.

Of course, in practice the computation is carried out in finite dimension: the space
L2(R3) is replaced by a finite dimensional space V , usually spanned by a chosen
finite set of atomic orbitals. Then the possible lack of compactness mentioned above
never occurs. Notice however that the problems that will be raised below concerning
the existence and the computation of excited states (specific solutions of (8) which
approximate the true eigenfunctions of HN ) appear in finite dimension also. They will
not be related to the mathematical problem of lack of compactness at infinity which
only occurs in infinite dimension.

The definition of the MCSCF ground state energy is clear: it suffices to minimize
the energy E K

N on MK
N , i.e. to minimize the N -body energy over MCSCF functions

of the type (5):

λK
0 = inf

(c,	)∈MK
N

E K
N (c,	). (9)

It can be proved that λK
0 > λ0 and that limK→∞ λK

0 = λ0, which justifies the
MCSCF approach for ground states. Recall that K is the number of orbitals appearing
in the model.

In infinite dimension, the existence of an MCSCF ground state was proved when
Z > N − 1 first by C. Le Bris [8] for a subcase of K = N + 2, and then by Friesecke
[4] in the general case K ≥ N . In the latter article, it is also shown that the MCSCF
ground state wavefunction�K

0 converges to the true eigenfunction�0 of HN . Finally,
the case of the methods used in practice like the CASSCF method was studied by the
author in [9].

Numerically, a minimizer of (9) is usually computed by a Newton-like algorithm,
sometimes improved by a trust-region method, see e.g. [3,6,7,13–15] and the ref-
erences in [2]. For the Hartree–Fock model K = N , efficient numerical methods
based on combinations of fixed-point and optimization strategies are available [1].
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Unfortunately, such algorithms are specifically designed for solving the Hartree–Fock
problem and seem to be difficult to adapt to the more general MCSCF setting.

2 MCSCF excited states

It is not obvious at all to define what an MCSCF excited state is. Indeed, due to the non-
linearity, the functional E K

N has many spurious stationary points. In [2], the following
general guiding principles for a d th excited state were proposed:

• P1 (First order condition) It should be a critical point of E K
N on MK

N , i.e. a solution
of the MCSCF equations (8).

• P2 (Second order condition) Its total Hessian matrix should have at most d neg-
ative eigenvalues [6]. This in particular implies that c should be at most the
(d +1)th eigenvector of the Hamiltonian matrix H	. But in principle, it could be a
lower eigenvector, because the d negative directions of the Hessian matrix do not
necessarily correspond to variations of c only.

• P3 (HUM-type theorem and large K behavior) Its energy λK
d should satisfy

λK
d ≥ λd and limK→∞ λK

d = λd . The associated wavefunction �K
d should con-

verge to the true excited state �d , solution of HN�d = λd�d .

If one wants to impose the third property P3, there is a natural definition for
the MCSCF excited state energies, which is indeed the one which is mostly used
in Quantum Chemistry (see, e.g. [13–15] and the references of [2]). Let us denote by
µK

d (	) the
(

K
N

)
eigenvalues of the Hamiltonian matrix H	, depending on the orbitals

	 = (ϕ1, . . . , ϕK ). By the usual Rayleigh-Ritz formula (2), one deduces that

λd ≤ µK
d (	).

This inequality is usually referred to as the Hylleraas–Undheim–MacDonald (HUM)
theorem in Chemistry. It is therefore natural to define the following energy:

µK
d = inf

	
µK

d (	), (10)

that is to say, quoting [13], “the MCSCF energy results from minimizing the appro-
priate eigenvalue of the Hamiltonian matrix with respect to orbital variations”. It can
actually be proved that µK

d ↘ λd as K → ∞. However, (10) is a minimization of an
eigenvalue of a symmetric matrix depending on a parameter	. This type of variational
method is generally very ill-posed mathematically (even in finite dimensions) and we
believe that most of the convergence problems encountered in practical computations
are due to this issue. We shall now give very simple examples in dimensions 1 or 2 to
illustrate the possible theoretical and numerical difficulties when trying to optimize
the eigenvalue of a matrix depending on a parameter.

First, it can happen that there is no stationary state (c,	) solution of (8) with an
energyµK

d , in which case it will not be possible to find a state satisfying the properties
P1 and P2. We give as an example an energy of the form E(v, x) = (v, A(x)v)R2

where v is a normalized vector in R
2, A(x) is a symmetric matrix depending on the
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Fig. 1 The eigenvalues of the matrix A(x)

parameter x ∈ R
2, and (·, ·)R2 denotes the usual scalar product of R

2. In our situation,
x corresponds to the set of the orbitals	whereas v plays the role of c. Let us consider
the following matrix

A(x) =
(− sin x sin y

sin y sin x

)
, (11)

where x = (x, y) ∈ R
2. The two eigenvalues of A(x) are

µ1(x) = −
√

x2 + y2 and µ2(x) =
√

x2 + y2,

see Fig. 1. Hence

inf
x∈R2

µ2(x) = 0,

the infimum being attained when x = 0. But it is an exercise to check that the energy
(v, x) → (v, A(x)v)R2 has no stationary state of the form (v, 0).

A second important problem is that there is no general well-behaved numerical
method for minimizing the eigenvalue of a symmetric matrix depending on a param-
eter, except in very special cases not applicable to our situation. One might be temped
to consider the following naive two-step algorithm, in which the orbitals and the coef-
ficients cI ’s are optimized separately:

Algorithm 1

(1) 	 Being fixed, take c′ to be a (d + 1)th eigenvector of H	;
(2) c′ Being fixed, find 	′ as a minimizer of 	̃ → E K

N (c
′, 	̃) and go back to (1).

This naive algorithm does not always converge and can oscillate between non phys-
ical states. As before, we give an example for a toy model in finite dimension. We
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introduce E(v, x) = (v, B(x)v)R2 where v is a normalized vector in R
2, x ∈ R and

B(x) is this time defined as:

B(x) =
(− sin x 0

0 sin x

)
. (12)

When Algorithm 1 is adapted to this example, one obtains an oscillation between
x = −π/2 and x = π/2.

In many Quantum Chemistry programs, an improved version of Algorithm 1 is
implemented [13,14,16]. The oscillation phenomenon reported on in the previous
example is called root-flipping and is a typical drawback when trying to compute
MCSCF excited states. Many solutions have been proposed to avoid this issue. First,
the computation is always done in a special symmetry subspace in order to avoid
degeneracy problems. Then, it has been proposed to optimize the average of differ-
ent eigenvalues µK

d ’s instead of only one [16]. On example (12), the optimization of
sin(x)/2 − sin(x)/2 = 0 of course leads to the correct answer, but this is the only
convex combination of the two eigenvalues that solves the root-flipping problem. Any
other combination of the form m sin(x)+ (1 − m)(− sin(x)) = (2m − 1) sin(x) with
m ∈ [0; 1], m �= 1/2, leads to the same root-flipping phenomenon.

Even when there is a stationary state with an energy µK
d , and when no root-flipping

is encountered, the state obtained with Definition (10) can be unphysical. An example
of such a situation is given in [10] for a two-electron system. This will be developed
below in Sect. 3. All this means that (10) cannot be considered as a relevant definition
in general: imposing that c is a specific eigenvector of H	 may lead to unphysical
results.

The issues raised by Definition (10) have already been described and studied in
details in [5–7,11,17] by the team of the DALTON software [20]. They proposed a
different definition of excited states which consists in just imposing that only the first
two properties P1 and P2 hold. A dth excited state is therefore defined as a stationary
state whose total Hessian matrix has exactly d negative eigenvalues. Such states are
computed in DALTON by a well-behaved Newton-type algorithm followed by a trust
region method, which does not lead to any root-flipping problem. However, one might
ask why any stationary state whose Hessian matrix has the right number of negative
eigenvalues would correspond to an approximation of the true excited state. Recall
that due to the nonlinearity, many spurious stationary states may exist. We will pro-
vide below an example of an MCSCF solution whose Hessian matrix has exactly one
negative eigenvalue and which is not at all an approximation of the first excited state.
Finally, states which do not satisfy the property P3 can be obtained by the DALTON
method,1 which is not completely satisfactory.

In [9], an alternate definition of MCSCF excited state energies was proposed and
the following theorem was proved:

Theorem 1 (Existence of MCSCF Excited States [9]). Let be Z > N − 1. For any
K ≥ N and any d = 0, . . . ,

(
K
N

) − 1, there exists a stationary state (cK
d ,	

K
d ) of E K

N

1 H. J. Aa. Jensen, private communication.
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on MK
N , whose Hessian matrix has at most d negative eigenvalues, and which is such

that, denoting λK
d = E K

N (c
K
d ,	

K
d ),

λd ≤ λK
d ≤ µK

d , and lim
K→∞ λ

K
d = λd .

Except the convergence of the wavefunction as K → ∞ which is still not proved
mathematically, one can therefore construct an MCSCF excited state which satisfies
the three properties P1–P3. In Theorem 1, it is not explained how the MCSCF excited
states are defined and constructed. Indeed, they are obtained by complicated min–max
variational methods which fully take into account the nonlinearity of the functional
E K

N , and differ from (10). Unfortunately, these variational methods are quite com-
plicated to present and also probably too involved to be used in practice when d is
too large. For this reason, we shall now only present and explain the case of the first
excited state energy λK

1 . Details for higher excited states can be found in [2,9].
As explained in [2], the variational formula providing the first excited state (cK

1 ,	
K
1 )

of Theorem 1 is the following:

λK
1 = inf

(c,	)∈MK
N

{
inf

γ∈(c,	)
sup

t∈[0;1]
E K

N (γ (t))

}
(13)

where

(c,	) =
{
γ ∈ C0

(
[0; 1],MK

N

)
, γ (0) = (c,	), γ (1) = (−c,	)

}
.

It was argued in [2] that a solution of the first inf in (13) is very probably given by an
MCSCF ground state (c0,	0), i.e. such that E K

N (c0,	0) = λK
0 (we do not write the

superscript K on (c0,	0) for simplicity). In this case, (13) reduces to

λK
1 = inf

γ :[0;1]→MK
N

γ (0)=(c0,	0),

γ (1)=(−c0,	0)

sup
t∈[0;1]

E K
N (γ (t)). (14)

This formula is probably clearer to the reader: it corresponds to a mountain pass
problem between the two ground states (c0,	0) and (−c0,	0), similar to those
encountered in molecular simulation in the search for transition states between reac-
tants and products on potential energy surfaces. The function γ in (14) represents the
path, parametrized on [0; 1]. The path which has the smallest higher energy is the one
which goes through the mountain pass point, the latter being interpreted as the first
MCSCF excited state.

Let us now explain why such a mountain pass problem to find the first nonlin-
ear excited state is somehow natural. Let us denote by �̄0 the MCSCF ground state
wavefunction associated with (c0,	0), which is a good approximation of the true
Schrödinger ground state �0 when K is large enough. Then the wavefunction associ-
ated with (−c0,	0) is −�̄0 and (14) corresponds to a mountain pass problem between
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Fig. 2 The true (Schrödinger)
first excited state �1 can be
obtained as a mountain pass
point between the two ground
states ±�0: any path linking �0
and −�0 necessarily intersects
the orthogonal of Span�0, on
which the energy is ≥ λ1

±�̄0, on the MCSCF manifold. This is now very natural since the true first excited
state�1 can also be obtained as a mountain pass point between ±�0, but on the whole
sphere of L2

a(R
3N ) (not only MCSCF states). An optimal path is given by the half

circle passing through �0 and �1, see Fig. 2.
Therefore, the computation of the first excited state is reduced to the problem of

finding a transition state between two ground states, on the manifold MK
N . This gives

rise to the following new algorithm which was proposed, studied and tested in [2]:

Algorithm 2

(1) Find an MCSCF ground state (c0,	0), by a Newton-like method.
(2) Find an initial path γ0 linking (c0,	0) and (−c0,	0) on the manifold MK

N .
For instance one can choose the following half circle where the orbitals are fro-
zen: γ0(t) = (c(t),	0) with c(t) = cos(π t)c0 + sin(π t)c′

0 where c′
0 is the

second eigenvector of the Hamiltonian matrix H	0 . This initial path can then be
perturbed randomly.

(3) Deform γ0 to solve the mountain pass problem between (c0,	0) and (−c0,	0).
(4) When the highest point on the path has a small-enough derivative, switch to a

Newton algorithm.

We refer to [2] for a detailed explanation of the method which has been used to
deform the paths, and which could be useful in other setting, for instance when one
wants to compute a transition state during a chemical reaction.

Remark On the orthogonality of the MCSCF wavefunctions. It is important to realize
that the wavefunction �̄1 of the first MCSCF excited state (c1,	1) is not necessarily
orthogonal to the MCSCF ground state wavefunction �̄0. In some Quantum Chem-
istry programs, the orthogonality between the ground and the first excited states is
always assumed. This is also a reason why an average of the first two eigenvalues of
the Hamiltonian matrix is sometimes optimized: the computation aims at finding both
the MCSCF ground state and the first MCSCF excited state, in the same orbital basis
(ϕ1, . . . , ϕK ).

However, there is no reason for assuming that the MCSCF ground state and the first
MCSCF excited state are orthogonal: this is a linear property, true for the Schrödinger
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linear model, and which will not necessarily be true for the MCSCF nonlinear approx-
imation. Imposing this condition might lead to important theoretical and numerical
problems, similar to the ones encountered and explained above. Indeed, it is the (non-
linear) mountain pass configuration which replaces the orthogonality property in the
case of the MCSCF first excited state. Of course, in the limit K → ∞, the states will
become orthogonal and there will be a choice for the optimal path which converges to
the half circle. We notice that in DALTON [20], different excited states are also not
necessarily orthogonal.

3 A test case: two-electron systems

In this last section, we report some numerical results that have been obtained in [2],
using Algorithm 2, on the simple case of the singlet state of two-electron systems.
Interesting properties in relation with previous remarks will be demonstrated when
the MCSCF wavefunction is not assumed to belong to any specific symmetry subspace.

We shall concentrate on the H2 molecule. We assume that the two protons are
located at (−R/2, 0, 0) and (R/2, 0, 0) in R

3. We restrict ourselves to singlet states
which take the form

�(x, σ ; y, σ ′) = ψ(x, y)|αβ〉(σ, σ ′)

where ψ is symmetric, ψ(x, y) = ψ(y, x), i.e. the antisymmetry is in the spin vari-
able. Of course, all the previous study can be easily adapted to the case of symmetric
two-body wavefunctions.

The Schrödinger Hamiltonian (denoted as H in this section) commutes with the
symmetry operator τ defined as (τ f )(x, y) = f (−x,−y), i.e. Hτ = τH . Therefore
H stabilizes the two eigenspaces of τ which are the spaces of even and odd two-body
wavefunctions

�g := {ψ | ψ(−x,−y) = ψ(x, y)} and �u := {ψ | ψ(−x,−y) = −ψ(x, y)}.

It is known in Chemistry that the ground state is in the �g symmetry whereas the
first excited state is in the �u symmetry. It is therefore natural to find the first excited
state as a minimizer in the�u subspace, and this is what is done in the usual Quantum
Chemistry programs.

However, the following will be dedicated to the behavior of the MCSCF method
in the full space, without taking any space symmetry into account. Of course, we do
not claim at all that this should be used in practice to compute the first excited state!
But rather this example provides a nice illustration of the possible difficulties: it could
be useful for a better understanding of the behavior of the MCSCF method when it is
used for the computation of excited states which are not the lowest of their symmetry.

Algorithm 2 was applied to find the first singlet excited state of the H2 molecule,
in the cc-pVDZ atomic basis of orbitals. In Fig. 3, the energy along the successive
paths generated by the algorithm is shown. The MCSCF first excited state is the state
of highest energy on the converged path, and it has two interesting features. First, its
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Fig. 3 Energy along the successive deformed paths generated by Algorithm 2 for the computation of the
first singlet excited state of H2, with R = 1 Å

parameter c is the first eigenvector of the Hamiltonian matrix H	, and not the second
as this is imposed by (10). This was predicted first by McCourt and McIver [10].
Notice however that the obtained energy is known to be an upper bound to the true
Schrödinger first excited state energy by Theorem 1, but this has nothing to do with
the usual linear Hylleraas–Undheim–MacDonald Theorem.

Then, our first excited state is close to the one which is computed by the usual
chemistry programs in the �u symmetry, but not equal to it. Indeed, it is also only
very close to be in the �u symmetry subspace, but does not exactly belong to �u . On
the other hand it has a very small gradient (of the order of 10−8), whereas the gradient
of the state found by restriction to the �u space has a norm only of order 10−4 (of
course when all variations into account, and not only those of the�u symmetry). This
shows that the restriction to the �u subspace is not necessarily compatible with a
nonlinear method like MCSCF: the MCSCF excited states do not a priori satisfy the
symmetries of the Schrödinger solution. This kind of symmetry breaking is very usual
for nonlinear theories. On the other hand, notice that there is no symmetry breaking
for the MCSCF ground state: even when there is no symmetry constraint, the MCSCF
ground state is indeed automatically found in the �g subspace.

Since there is no degeneracy problem, it was possible in [2] to find a solution of
the eigenvalue minimization problem (10), which is the one used in most Quantum
Chemistry programs µK

1 . What is surprising is that the so-obtained state does not at
all approximate the first excited state: its energy is greater than the one computed by
the mountain pass method, µK

1 > λK
1 , and the optimal state itself belongs to the �g

symmetry subspace. This shows that imposing that c is a specific eigenvector of the
Hamiltonian matrix H	 might lead to a spurious solution, although the Hessian matrix
has exactly one negative eigenvalue. This also shows that not all the stationary states
having this last property are related to the true first excited state.

The above computation were carried out in [2] for different values of the distance
R, giving the Potential Energy Surface of the singlet state of H2, see Fig. 4. Notice
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Fig. 4 Potential Energy Surface of the singlet state of the molecule H2

that the spurious solution of (10) has an energy which is closer to the true energy as
R grows, but the state itself is far from the true solution since it belongs to the �g

subspace.
As a conclusion, we have shown that the nonlinear features of the MCSCF model

raise important issues for the definition and the computation of excited states. Some
properties which are true for the linear Schrödinger model (orthogonality, symme-
tries. . .) can be lost when using the MCSCF approximation. Imposing them by brute
force may sometimes lead to wrong results, or to involved numerical difficulties. A
mathematically well-posed definition was provided in [9], but its complicated formu-
lation (unavoidable consequence of the MCSCF nonlinearity) probably restricts its
applicability to the first or possibly the second excited states only. For the first excited
state, it consists in solving a mountain pass between two MCSCF ground states whose
configuration coefficients c are opposite. This method could be used to compute first
excited states which are not the lowest of their symmetry, and for which the usual
methods might fail. It could help in understanding better the behavior of the nonlinear
MCSCF methods.
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